

Physics 1

PHYSICS 1 Workbook

Table of Contents

D Alemberts Principle – Fictitious Forces	2
Coriolis and Centrifugal Forces	

D Alemberts Principle – Fictitious Forces

Basic Explanation

Questions:

Simple Fictitious Force in Elevator

A man of mass 70 kg is standing on a scale in an elevator. What value will the scale show, in the following situations:

- a. The elevator is at rest.
- b. The elevator is moving at a constant velocity of $5\frac{m}{\cdot}$.
- c. The elevator is accelerating upwards with an acceleration of $5\frac{m}{{
 m c}^2}$.
- d. The elevator is accelerating downwards with an acceleration of $5\frac{m}{c^2}$.

Triangular Car

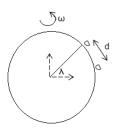
A Triangular Car has angle θ at its front. On the car a mass M is placed. Between the car and the mass there is frictional force. We are told that $\sin\theta = 0.6$ and that $\mu_k = \mu_s = 0.2$.

- a. What is the condition on the acceleration, a, such that the mass, M, won't slip downwards?
- b. We are now told that a = 0.2g. Calculate the acceleration of the mass in the car's frame of reference.
- c. Calculate the acceleration of the mass in the lab's frame of reference.
- d. We are now told that the car is travelling to the left. What must be the car's acceleration leftwards, such that the mass will detach from the car?

Answer Key:

d. N = 350N

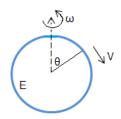
- **1)** a. 700N b. 700N c. 1050N d. N = 350N **2)** a. $a \ge 0.48g$ b. $a_x = 0.2569g$ c. $a_x = 0.4g$, $a_y = 0.15g$ d. a = 1.33g


Coriolis and Centrifugal Forces

Questions:

1) A Ship Firing a Shell.

Ship A, sailing at latitude λ , fires a shell at a velocity of ν towards ship B, which is sailing at a distance of d South of Ship A.


Find the deviation of the position of the shell caused by the Coriolis Force. Disregard the effect of the force on the East-West velocity of the shell and on the orthogonal velocity, relative to Earth.

Assume that the shell is moving in a straight line and disregard the ballistic trajectory of the shell. The velocity of the earths rotation is ω .

2) River.

A river is flowing with velocity ν from north to south. The position of the river is θ relative to Earth's axis of rotation. Earth's radius is R and the width of the river is D. Earth's angular velocity is $\omega = 2\pi/24$. Find the height difference between the banks of the river.

Answer Key:

$$1) z = \frac{\omega d^2}{v} \sin \lambda$$

2)
$$\tan \varphi = \frac{2mv\omega\cos\theta}{-mg + m\omega^2R_E\sin^2\theta}$$