Login

Question

Show More

Let \( f \) be defined on an interval \( (a, b) \), where \( a = -\infty \) and \( b = \infty \) are allowed. With the convenient notation \( a^+ = -\infty \) if \( a = -\infty \) and \( b^- = \infty \) if \( b = \infty \), we obtain <br/> <br/>(a) if \( f \) is increasing, then <br/> <br/>\[ <br/>\lim_{x \to b^-} f(x) = \sup\{f(x) : x \in (a, b)\} \quad \text{and} \quad \lim_{x \to a^+} f(x) = \inf\{f(x) : x \in (a, b)\}; <br/>\] <br/> <br/>(b) if \( f \) is decreasing, then <br/> <br/>\[ <br/>\lim_{x \to b^-} f(x) = \inf\{f(x) : x \in (a, b)\} \quad \text{and} \quad \lim_{x \to a^+} f(x) = \sup\{f(x) : x \in (a, b)\}. <br/>\]
StudyStudy

Solution

PrepMate

Ask a tutor

If you have any additional questions, you can ask one of our experts.

Recently Asked Questions